In 1912, the ship RMS Titanic struck an iceberg on its maiden voyage and sank, resulting in the deaths of most of its passengers and crew. In this introductory project, we will explore a subset of the RMS Titanic passenger manifest to determine which features best predict whether someone survived or did not survive.
The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. In this project, we will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston.
In this project, we will employ several supervised algorithms to accurately model individuals' income using data collected from the 1994 U.S. Census. We will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Our goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.
In this project, we will analyze a dataset containing data on various customers' annual spending amounts (reported in monetary units) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.
In this project, we will work towards constructing an optimized Q-Learning driving agent that will navigate a Smartcab through its environment towards a goal. Since the Smartcab is expected to drive passengers from one location to another, the driving agent will be evaluated on two very important metrics: Safety and Reliability. A driving agent that gets the Smartcab to its destination while running red lights or narrowly avoiding accidents would be considered unsafe. Similarly, a driving agent that frequently fails to reach the destination in time would be considered unreliable. Maximizing the driving agent's safety and reliability would ensure that Smartcabs have a permanent place in the transportation industry.
In this project, you will make the first steps towards developing an algorithm that could be used as part of a mobile or web app. At the end of this project, your code will accept any user-supplied image as input. If a dog is detected in the image, it will provide an estimate of the dog's breed. If a human is detected, it will provide an estimate of the dog breed that is most resembling.
In this capstone project, you will leverage what you’ve learned throughout the Nanodegree program to solve a problem of your choice by applying machine learning algorithms and techniques. You will first define the problem you want to solve and investigate potential solutions and performance metrics. Next, you will analyze the problem through visualizations and data exploration to have a better understanding of what algorithms and features are appropriate for solving it. You will then implement your algorithms and metrics of choice, documenting the preprocessing, refinement, and postprocessing steps along the way. Afterwards, you will collect results about the performance of the models used, visualize significant quantities, and validate/justify these values. Finally, you will construct conclusions about your results, and discuss whether your implementation adequately solves the problem.